Changes in extreme waves in the Arctic Ocean

Isabela de Souza Cabral

lan Young

Alessandro Toffoli

Department of Infrastructure Engineering

The University of Melbourne

Sea state changes in the Arctic

Emerging

Arctic

Declining of sea ice extent

Increasing fetches

- Coastal morphological changes
- Supply of freshwater and terrestrial wildlife habitat

MELBOURNE

- Coastal infrastructures
- Eskimo villages need to relocate

NASA, 2016

Sea state changes in the Arctic

THE UNIVERSITY OF **MELBOURNE**

Breivik et al., 2013

Aim

Assess the changes in extreme waves across the Arctic Ocean based on the results of a 28-year wave hindcast.

Model Setup

- WaveWatch III version 6.07
- Atmospheric forcing
 - CFSR
 - ERA-Interim
 - ERA5
- Source and sink terms
 - ST4 (Ardhuin et al., 2010)
 - ST6 (Zieger et al., 2015)
- Sea ice concentration (land if >25%)
 - IFREMER/CERSAT
 - NSIDC/NOAA
 - GLORYSV4
 - ERA-Interim
 - ERA5
- Spatial resolution
 - 9 to 22 km
 - 6 to 16 km
 - 4 to 13 km

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500

Validation

Wave Hindcast: 1991-2018

Model vs. Altimeters (2012-2016)

- ERS1
- ERS2
- ENVISAT
- GFO
- CRYOSAT 2
- SARAL

Hs hindcast versus colocated data from altimeters

Wave Hindcast - Results

Estimates of extreme wave heights

Established EVA $F(x) = 1 - \left[1 + k \left(\frac{x - A}{B}\right)^{-1/k}\right]$

Interest in the tail of the PDF

Stationary approach

MELBOURNE

TS EVA – non-seasonal

Transformed stationary (TS) Method (Mentaschi et al., 2016)

$$x(t) = f(y, t) = \frac{y(t) - T_y(t)}{S_y(t)}.$$

- Transform the non-stationary time series y(t) into a stationary series x(t)
- 2. Performing a stationary EVA
- 3. Back-transforming the resulting extreme value distribution into a time-dependent one.

TS EVA – seasonal

THE UNIVERSITY OF MELBOURNE

Transformed stationary (TS) method (Mentaschi et al., 2016)

THE UNIVERSITY OF MELBOURNE

Non-seasonal TS EVA – Results

Non-seasonal TS EVA – Results

THE UNIVERSITY OF MELBOURNE

Seasonal TS EVA - results

POT(90thP)

Seasonal TS EVA - results

THE UNIVERSITY OF MELBOURNE

POT(90thP)

Conclusions

- 28-year wave hindcast was performed and the validation against satellite data showed satisfactory agreement
- Monthly trends of 98th percentile of wave heights showed substantial seasonal differences. The results demonstrated a general increase in wave heights, with the exception of Greenland and Norwegian seas in some months.
- Non-stationary EVA was applied to evaluate the extreme waves across the Arctic, taking into account the long term trends and seasonality
- The non-seasonal approach showed an increase of the areal-average of the H¹⁰⁰ of approximately 2 m across the Arctic Ocean, with the exception of the region closer to the North Atlantic Ocean.
- The EVA seasonal approach allowed a better understand of the regional changes in the extremes throughout the year and how much the extreme waves have increased over the past decades.